
Designing an Efficient TCP Stack

with P4-enabled SmartNICs

YoungGyoun Moon, Seungeon Lee,

Muhammad Asim Jamshed*, KyoungSoo Park

School of Electrical Engineering, KAIST

* Intel Labs

Transmission Control Protocol (TCP)

 Reliable data transfer without overwhelming network

 Easy to deploy: no specialized in-network support required

 TCP is widely adopted in modern networks

• Cellular network: 95+% of traffic is TCP [1]

• Datacenter network: half of the traffic is TCP [2]

[1] Comparison of Caching Strategies in Modern Cellular Backhaul Networks (MobiSys ‘13)

[2] RDMA over Commodity Ethernet at Scale (SIGCOMM ‘16)

2

Kernel-Bypass TCP Stacks

 Kernel TCP stack: inefficient packet I/O and limited core scalability

 Several user-level TCP stacks are proposed to avoid the inefficiencies

• e.g., mTCP [NSDI ‘14], IX [OSDI ‘14], Sandstorm [SIGCOMM ‘14]

• Key-value store performance with short-lived TCP connections

– Redis (v4.0.8) patched to mTCP with DPDK 17.08

– Facebook USR workload with short (< 20B) keys and 2B values

3

0.0

5.0

10.0

15.0

20.0

1 2 3 4 5 6 7 8

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
 (

x
1
0

6
)

Number of CPU cores

40GbE

10GbE

Network BW is growing

much faster than CPU power

 CPU: Xeon Gold 6142

 NIC: XL710-QDA2

 Memory: 128GB DDR4

TCP Overhead in Short-lived Connections

 CPU breakdown of Redis with mTCP

4

57%

0% 25% 50% 75% 100%

TCP/IP Redis session init/destroy Redis request handling

Connection setup & teardown

61%

Message delivery

29%

Timer & context switching

Socket/epoll API calls

• TCP connection state init & destroy

• TCP connection state update

• Packet I/O for TCP control packets

L4 switch

TCP Overhead in Application-level Proxying

 Typical operations of a transparent Layer-7 (L7) proxy

• Accept a client connection, read a request, and decide a backend server

• Relay payload between the client and the backend server

 Cost of relaying TCP bytestream in L7 proxy (64B packets)

5

NIC

(XL710-QDA2)

Driver

Networking stack

RX/TX queues

mTCPTCP/IP

TCP proxyApplication

40 GbE

L4 switch at host: 7 Gbps/core
(e.g., splice(), SOCKMAP)

L7 proxy at host: 2 Gbps/core

+ DMA overhead

+ TCP overhead

Our Goal & Approach

 Goal: To overcome protocol conformance overhead in TCP stacks

• Connection management and control packet processing

• Payload relaying between two connections

 Our approach: Offload mechanical TCP operations to NICs

6

Programmable NIC

Networking stackHost

Mechanical

TCP operations

mTCP

AccelTCP

 A dual-stack TCP architecture with stateful offloading

7

Host stack

Central TCP operationsReliable data transfer

Buffer management

Congestion/flow control

Peripheral TCP operationsSegmentation/checksum

Connection setup/teardown

Connection splicing

NIC stack

Reliable data transfer

Buffer management

Congestion/flow control

Segmentation/checksum

Connection setup/teardown

Connection splicing

– Complex operations for

application data transfer

– Mechanical operations for

protocol conformance

AccelTCP Design Approach

8

Dataplane

Dataplane

Dataplane

Host

NIC

Connection setup Data transfer
(established)

Connection teardown
time

TCB TCB

Challenge #1. Synchronize transmission control block (TCB)

• Difficult to maintain consistency across two stacks

Approach #1. Single ownership of a TCP flow at any given time

• No shared connection state between NIC and host stack

AccelTCP Design Approach

9

Challenge #2. Limited On-NIC Resources

Limited SRAM on NICs

• For holding program instructions and connection states

• e.g., Netronome Agilio LX (40GbE NIC): 8MB of on-chip SRAM

Limited packet processing headroom on NICs

25

30

35

40

45

0 200 400 600 800

#
 p

ac
k

et
s/

se
c

(1
0

6
)

CPU cycles spent in custom code

-10%
-25%

AccelTCP Design Approach

10

Approach #2. Minimize complexity on NIC dataplane

• NIC dataplane handles common-case fast path of TCP operations

– e.g., When L7 proxy becomes transparent mode, fall back to L4 switch on NIC

Approach #3. The host side should enforce full control of offloading

• Host stack keeps monitoring the resource consumption on NIC

• The host stack should be able to operate standalone

Connection Setup Offload

 Use SYN cookie to handle incoming connections

• Can handle connection setup in a stateless manner

11

SYN

SYN-ACK (cookie)

ACK (cookie)

Client NIC Server

listen()

accept()

① Install rules &

metadata

③ Verify SYN cookie

ACK*

② Create SYN cookie

④ Notify of a new
connection

Connection Teardown Offload

 Common case of connection teardown is a simple state transition

• Host stack hands over ownership of TCB and remaining send buffer data

– Offload only if (data size) < (initial congestion window size)

• Perform TCP segmentation at NIC if required (e.g., TSO)

12

Client NIC Server

close()

write()
FIN*(data)

FIN(data)

FIN-ACK

ACK

① Store connection
metadata

④ Clear connection
metadata

TIME_WAIT

③ Reply with ACK

② Retransmit FIN
FIN(data)

` RTO

 Flow states on SRAM

• 4-tuple

• TCP state

• RTO

• Expected SEQ/ACK #

 Entire packets on DRAM

(after TCP segmentation)

On-chip SRAM

Gloabal flow
list/table

Handling Timeouts on NIC

 Required for TCP retransmission or idle timeout, TIME_WAIT

 Naïve approach: a global list or hash table for tracking timeout

• Tens or hundreds of processing cores in recent SmartNICs

– e.g., Netronome Agilio LX have 120 cores for flow processing

– No flow-core affinity is guaranteed

• Concurrent access to a global structure incurs a huge lock contention

13

…

Core
1

…

…

Core
2

…

…

Core
3

…

…

…

…

… … …
Core

N

Gloabal flow
list/table

Handling Timeouts on NIC

 Our approach: timer bitmap wheel approach

• Suitable for concurrent write-heavy workloads

• Bitmap scan is parallelized with many processor cores

14

timeout

…

(scanned by core 1)

(scanned by core 2)

(scanned by core 3)

(scanned by core 4)

(scanned by core N)

T =1ms

T=2ms

T=3ms

T=4ms

T=5ms
T=6ms

T=7ms

T=9ms

T=8ms

T=10ms (# bits) = (max # of flow entries)

Connection Splicing Offload

 L7 proxy can ask for connection splicing offload on transparent mode

• No more payload modification is required

15

Client Proxy Server

nsplice()

③ L4 switch at NIC

② Store metadata of
spliced connections

① L7 proxy at host

NIC

⑤ Clear metadata and notify host

(FIN handshake)
④ Track connection

teardown

 Differential TCP/IP

checksum update

AccelTCP Host Stack

 Host stack can selectively control NIC offload

• It also handles any corner cases that cannot benefit from offload

– e.g., SYN cookie cannot be enabled for SYNs without TCP timestamp

– e.g., On-NIC SRAM is overloaded

 Host TCP stack optimizations

• Opportunistic zero-copy

• User-level threading

• Lazy TCB Creation

16

Lazy TCB Creation

 After NIC offload, TCB init and destroy takes 30% of total CPU cycles

• A full TCB of a connection ranges from 400 to 700 bytes

 Our observation

• Many of the fields are unnecessary for single-transaction case

– e.g., metadata related to TCP send and receive buffers

 Our approach

• Create a quasi-TCB (40 bytes) for a new connection

• Convert it to full TCB only when multiple transactions are observed

17

AccelTCP Implementation

 NIC stack

• 1,501 lines of C code and 195 lines of P4 code

– Running on Netronome Agilio NICs (with NFP-4000 or NFP-6480 chipset)

• Host-side L2-L4 NFs (e.g., firewalling, ACL, or host networking)

– Must be offloaded to NIC accordingly

– Such NFs can be written in P4 and easily integrated with AccelTCP

(e.g., placing them properly at ingress/egress pipelines of the NIC dataplane)

 Host stack

• Extended mTCP to implement AccelTCP

– Easy to port existing apps (connect()  mtcp_connect())

• With minimum set of additional APIs for controlling NIC offload

– Only require 1 to 3 LoCs from mTCP to AccelTCP

18

Evaluation

19

 Hardware configuration

• Server (or proxy):

– Xeon Gold 6142 (16-cores @ 2.60GHz), 128GB DDR4 DRAM

– Netronome Agilio-Lx 40GbE dual-port NIC

(* For IX experiment: two Intel 82599 dual-port 10GbE NICs)

• Clients:

– Xeon E5-2640v3 (8-cores @ 2.60GHz), 32GB DDR4 DRAM

– XL710-QDA2 40GbE dual-port NIC (*only the 1st port is used)

• Backend servers (for proxy experiment)

– CPU: mix of Xeon E5-2699 v4 @ 2.2GHz, Xeon E5-2683 v4 @ 2.1GHz

– XL710-QDA2 40GbE dual-port NIC (*only the 1st port is used)

Server
Clients
Clients
Clients
Clients

Clients
Clients
ClientsBackend

servers

Proxy
40GbE 40GbE

(SUT)

80GbE 80GbE

 Key-value store (Redis) performance

• A single CPU core used

• Under realistic workload (USR workload from Facebook)

Performance Improvement on Key-value Store

20

0.3

1.4

3.1

0.0

0.8

1.6

2.4

3.2

1 2 3 4 5 6 7 8

T
ra

n
sa

ct
io

n
s/

se
c

(x
1

0
6
)

Number of CPU cores

Linux TCP mTCP AccelTCP

2.2x 10x

 CPU breakdown for key-value store (Redis)

Performance Improvement on Key-value Store

21

14%

38%

56%

0% 25% 50% 75% 100%

AccelTCP

mTCP (user-level thread)

mTCP (kernel thread)

CPU utilization

TCP/IP Redis session init/destroy Redis request handling

Performance Improvement on L7 Load Balancer

22

 Layer-7 load balancer (HAProxy) performance

• Under realistic workload (SpecWeb2009-like)

Cost-effectiveness Analysis

 Normalized performance-per-dollar (64B TCP echo server)

23

mTCP

XL710 ($440)

AccelTCP

Agilio LX ($1,750)

E5-2650v2 ($1,170) Gold 6142 ($2,950)

1

1.93
(93%↑)

1.25

1.96
(57%↑)

Comparison Against Prior TCP Offloads

 TCP Offload Engine (TOE): offload entire TCP stack to NICs

• Unpopular in practice: complex interface, limited NIC resources

 TCP Segmentation Offload (TSO) and Large Receive Offload (LRO)

• Significantly saves CPU cycles for processing large messages

24

Small-sized connections Large-sized connections

Server/clients

Proxies

Typical TCP offloads
(e.g., TSO, LRO)

AccelTCP

Conclusion

 TCP stack performance is fundamentally limited due to protocol

conformance overhead

 We propose AccelTCP, a hardware-assisted TCP stack architecture

• Harnesses programmable NICs as a TCP protocol accelerator

 AccelTCP saves a significant amount of CPU cycles used for

connection management and proxying

• Improves the performance of key-value store by 2.3x

• Improves the performance of L7 proxying by up to 11.9x

25

Thank you

